Rare event simulation related to financial risks: efficient estimation and sensitivity analysis

Abstract : In this paper, we develop the reversible shaking transformation methods on path space of Gobet and Liu [GL15] to estimate the rare event statistics arising in different financial risk settings which are embedded within a unified framework of isonormal Gaussian process. Namely, we combine splitting methods with both Interacting Particle System (IPS) technique and ergodic transformations using Parallel-One-Path (POP) estimators. We also propose an adaptive version for the POP method and prove its convergence. We demonstrate the application of our methods in various examples which cover usual semi-martingale stochastic models (not necessarily Markovian) driven by Brownian motion and, also, models driven by fractional Brownian motion (non semi-martingale) to address various financial risks. Interestingly, owing to the Gaussian process framework, our methods are also able to efficiently handle the important problem of sensitivities of rare event statistics with respect to the model parameters.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

Contributeur : Emmanuel Gobet <>
Soumis le : jeudi 22 octobre 2015 - 21:46:37
Dernière modification le : mercredi 25 avril 2018 - 10:45:37
Document(s) archivé(s) le : vendredi 28 avril 2017 - 07:18:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01219616, version 1


Ankush Agarwal, Stefano De Marco, Emmanuel Gobet, Gang Liu. Rare event simulation related to financial risks: efficient estimation and sensitivity analysis. 2015. 〈hal-01219616v1〉



Consultations de la notice


Téléchargements de fichiers