Study of new rare event simulation schemes and their application to extreme scenario generation

Abstract : This is a companion paper based on our previous work [ADGL15] on rare event simulation methods. In this paper, we provide an alternative proof for the ergodicity of shaking transformation in the Gaussian case and propose two variants of the existing methods with comparisons of numerical performance. In numerical tests, we also illustrate the idea of extreme scenario generation based on the convergence of marginal distributions of the underlying Markov chains and show the impact of the discretization of continuous time models on rare event probability estimation.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01249625
Contributeur : Emmanuel Gobet <>
Soumis le : samedi 2 janvier 2016 - 11:03:27
Dernière modification le : samedi 18 février 2017 - 01:20:02

Fichier

RareEventFinanceProceed_v6_fin...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01249625, version 1

Citation

Ankush Agarwal, Stefano De Marco, Emmanuel Gobet, Gang Liu. Study of new rare event simulation schemes and their application to extreme scenario generation. 2016. 〈hal-01249625〉

Partager

Métriques

Consultations de la notice

523

Téléchargements de fichiers

162