Automatic annotation of facial actions from a video record: The case of eyebrows raising and frowning

Abstract : Recent advances in the field of computer vision and machine learning have given birth to a generation of softwares enable to detect and track a face along a video record and eventually to measure its internal facial movements. We investigate herein on a specific task, the detection of eyebrows raising and frowning facial actions, the potential of these softwares on spontaneous, in-the-wild video corpus. We propose a tool which allow to extract eyebrows raising and frowning from the output of two state-of-the-art facial behavior analysis softwares (OpenFace and IntraFace). The evaluation performed on our manually annotated in-the-wild video corpus suggests that the tool can be used with benefits for automatic annotation purpose.
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01769684
Contributeur : Stéphane Rauzy <>
Soumis le : mercredi 18 avril 2018 - 11:49:07
Dernière modification le : jeudi 7 février 2019 - 17:09:07

Fichier

SRAG_wacai_2018_final_18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01769684, version 1

Collections

Citation

Stéphane Rauzy, Aurélie Goujon. Automatic annotation of facial actions from a video record: The case of eyebrows raising and frowning. Workshop on "Affects, Compagnons Artificiels et Interactions", WACAI 2018, Magalie Ochs, Jun 2018, Porquerolles, France. 7 p. ⟨hal-01769684⟩

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

144